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ECS315 2016/1 Part III.1 Dr.Prapun

7 Random variables

In performing a chance experiment, one is often not interested
in the particular outcome that occurs but in a specific numerical
value associated with that outcome. In fact, for most applica-
tions, measurements and observations are expressed as numerical
quantities.

Example 7.1. Take this course and observe your grades.

Ω = {A,B+, B, C+, C,D+, D, F}
Define a function G(·) that maps the letter grades to numerical
values:

G(A) = 4, G(B+) = 3.5, G(B) = 3, G(C+) = 2.5, G(C) = 2,

G(D+) = 1.5, G(D) = 1, G(F ) = 0.

Example 7.2. Roll a dice. Let X be the result.

1

7.3. The advantage of working with numerical quantities is that
we can perform mathematical operations on them.

In the mathematics of probability, averages are called expecta-
tions or expected values.
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7.4. Intuitively, a random variable is a “variable” that “takes on
its values by chance”.

7.5. The convention is to use capital letters such as X, Y , Z to
denote random variables.

Definition 7.6. A real-valued function X(ω) defined for all points
ω in a sample space Ω is called a random variable (RV) 29.

• A random variable is a rule that assigns a numerical value to
each possible outcome of a chance experiment.

Example 7.7. Roll a fair dice:

Ω = {1, 2, 3, 4, 5, 6} = {ωi : ωi = i, i = 1, 2, . . . , 6} .

Observation:

(a) More than one random variables can be defined on one sample
space.

(b) Although the function X, Y , Z, and U are deterministically
defined, their values depend on the value of the outcome from
the experiment, which is random.

29The term “random variable” is a misnomer. Technically, if you look at the definition
carefully, a random variable is a deterministic function; that is, it is not random and it is not
a variable. [Toby Berger][25, p 254]

• As a function, it is simply a rule that maps points/outcomes ω in Ω to real numbers.

• It is also a deterministic function; nothing is random about the mapping/assignment.
The randomness in the observed values is due to the underlying randomness of the
argument of the function X, namely the experiment outcomes ω.

• In other words, the randomness in the observed value of X is induced by the underlying
random experiment, and hence we should be able to compute the probabilities of the
observed values in terms of the probabilities of the underlying outcomes.
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Example 7.8 (Three Coin Tosses). Counting the number of heads
in a sequence of three coin tosses.

Ω = {TTT,TTH,THT,THH,HTT,HTH,HHT,HHH}
Three Coin Tosses

1
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Example 7.9 (Sum of Two Dice). If S is the sum of the dots
when rolling one fair dice twice, the random variable S assigns the
numerical value i+j to the outcome (i, j) of the chance experiment.

Example 7.10. Continue from Example 7.7,

(a) What is the probability that X = 4?

(b) What is the probability that Y = 4?
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Definition 7.11. Events involving random variables: When we
write

[some condition(s) on X],

we mean “the set of outcomes in Ω such that X(ω) satisfies the
condition(s) specified.”

• [X = x] = {ω ∈ Ω : X(ω) = x}

◦ We usually use the corresponding lowercase letter30 to
denote

(a) a possible value (realization) of the random variable

(b) the value that the random variable takes on

(c) the running values for the random variable

• [X ∈ B] = {ω ∈ Ω : X(ω) ∈ B}
• [a ≤ X < b] = {ω ∈ Ω : a ≤ X(ω) < b}
• [X > a] =

All of the above items are sets of outcomes. They are all events!

Example 7.12. Continue from Examples 7.7 and 7.10,

(a) [X = 4] = {ω ∈ Ω : X(ω) = 4}
(b) [Y = 4] = {ω ∈ Ω : Y (ω) = 4} =

{
ω : (ω − 3)2 = 4

}
7.13. Event of the form “[some condition(s) on X]” or “[some

statement(s) about X]” can be written in the from [X ∈ B] for
some appropriate B.

30This is the same as writing [X = c] where c is a constant. Basically, it is a generic
notation for [X = 5], [X = 1.6], [X = π], etc. We use this when

(a) we don’t want to specify the constant in the expression yet or

(b) we want to say that the statement/equation/property containing it is valid for any value
of c.

It turns out that, later on, we will have to deal with many random variables and hence it is
convenient to have the name of the constant c match the name of the corresponding random
variable. So, we talk about the events [X = x], [Y = y], and [Z = z] instead of having to
find new name for the constant corresponding to each one of them, say, [X = c], [Y = d], and
[Z = h].

You may think we can use constants c1, c2, . . .. However, we also will have to deal with
ransom variables X1, X2, . . ., Y1, Y2, . . ., Z1, Z2, . . .. So, again, will have to come up with new
names for a lot of constants.
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Example 7.14. Express each event below in the form [X ∈ B].

(a) [5 ≤ X < 8]

(b) [|X| < 3]

(c) [X > 2]

(d) [X = 1]

Definition 7.15. To avoid double use of brackets (round brack-
ets over square brackets), we write P [X ∈ B] when we means
P ([X ∈ B]). Hence,

P [X ∈ B] = P ([X ∈ B]) = P ({ω ∈ Ω : X(ω) ∈ B}) .

Similarly,

P [X < x] = P ([X < x]) = P ({ω ∈ Ω : X(ω) < x}) .

Definition 7.16. We also have another notation for P [X ∈ B]:

PX(B) ≡ P [X ∈ B] .

Observe that this function PX is a set function. It maps subsets
of real numbers into their probability values. Technically, we call
this function the law or distribution of the random variable X.
However, later on, we shall see that there are many functions that
are also referred to as the “distribution” of X as well. They are
all equivalent in the sense that they (almost surely) give the same
information about probability concerning X.

Example 7.17. In Example 7.8 (Three Coin Tosses), if the coin
is fair, then
P [N < 2] ≡
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7.18. At a certain point in most probability courses, the sample
space is rarely mentioned anymore and we work directly with ran-
dom variables. The sample space often “disappears” along with
the “(ω)” of X(ω) but they are really there in the background.

Definition 7.19. A set S is called a support of a random variable
X if P [X ∈ S] = 1.

• To emphasize that S is a support of a particular variable X,
we denote a support of X by SX .

• Practically, we usually define a support of a random variable
X to be the set of all the “possible” values of X.31

• For any random variable, the set R of all real numbers is
always its support; however, it is not quite useful because
it does not further limit the possible values of the random
variable.

• Recall that a support of a probability measure P is any set
A ⊂ Ω such that P (A) = 1.

Definition 7.20. The probability distribution is a description
of the probabilities associated with the random variable.

7.21. There are three types of of random variables. The first
type, which will be discussed in Section 8, is called discrete ran-
dom variable . In practice, to tell whether a random variable
is discrete, one simple way is to consider the “possible” values of
the random variable. If it is limited to only a finite or countably
infinite number of possibilities, then it is discrete. We will later
discuss continuous random variables whose possible values
can be anywhere in some intervals of real numbers.

31Later on, you will see that 1) a default support of a discrete random variable is the set
of values where the pmf is strictly positive and 2) a default support of a continuous random
variable is the set of values where the pdf is strictly positive.
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